Akt1 and akt2 play distinct roles in the initiation and metastatic phases of mammary tumor progression.

نویسندگان

  • Rachelle L Dillon
  • Richard Marcotte
  • Bryan T Hennessy
  • James R Woodgett
  • Gordon B Mills
  • William J Muller
چکیده

The phosphatidylinositol 3-kinase (PI3K)/Akt survival pathway is often dysregulated in cancer. Our previous studies have shown that coexpression of activated Akt1 with activated ErbB2 or polyoma virus middle T antigen uncoupled from the PI3K pathway (PyVmT Y315/322F) accelerates mammary tumor development but cannot rescue the metastatic phenotype associated with these models. Here, we report the generation of transgenic mice expressing activated Akt2 in the mammary epithelium. Like the mouse mammary tumor virus-Akt1 strain, mammary-specific expression of Akt2 delayed mammary gland involution. However, in contrast to Akt1, coexpression of Akt2 with activated ErbB2 or PyVmT Y315/322F in the mammary glands of transgenic mice did not affect the latency of tumor development. Strikingly, Akt2 coexpresssion markedly increased the incidence of pulmonary metastases in both tumor models, demonstrating a unique role in tumor progression. Together, these observations argue that these highly conserved kinases have distinct biological and biochemical outputs that play opposing roles in mammary tumor induction and metastasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct biological roles for the akt family in mammary tumor progression.

The phosphatidylinositol 3' kinase/Akt pathway is frequently dysregulated in cancer, which can have unfavorable consequences in terms of cell proliferation, survival, metabolism, and migration. Increasing evidence suggests that Akt1, Akt2, and Akt3 play unique roles in breast cancer initiation and progression. We have recently shown that in contrast to Akt1, which accelerates mammary tumor indu...

متن کامل

AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins

The purpose of this study was to elucidate the mechanisms associated with the specific effects of AKT1 and AKT2 isoforms in breast cancer progression. We modulated the abundance of specific AKT isoforms in IBH-6 and T47D human breast cancer cell lines and showed that AKT1 promoted cell proliferation, through S6 and cyclin D1 upregulation, but it inhibited cell migration and invasion through β1-...

متن کامل

Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis.

Colorectal cancer is the second leading cause of cancer-related deaths in the United States. Understanding the distinct genetic and epigenetic changes contributing to the establishment and growth of metastatic lesions is crucial for the development of novel therapeutic strategies. In a search for key regulators of colorectal cancer metastasis establishment, we have found that the serine/threoni...

متن کامل

Distinct roles of AKT isoforms in regulating β1-integrin activity, migration, and invasion in prostate cancer

AKT1 and AKT2 kinases have been shown to play opposite roles in breast cancer migration and invasion. In this study, an RNA interference screen for integrin activity inhibitors identified AKT1 as an inhibitor of β1-integrin activity in prostate cancer. Validation experiments investigating all three AKT isoforms demonstrated that, unlike in breast cancer, both AKT1 and AKT2 function as negative ...

متن کامل

Opposing Functions of Akt Isoforms in Lung Tumor Initiation and Progression

BACKGROUND The phosphatidylinositol 3-kinase-regulated protein kinase, Akt, plays an important role in the initiation and progression of human cancer. Mammalian cells express three Akt isoforms (Akt1-3), which are encoded by distinct genes. Despite sharing a high degree of amino acid identity, phenotypes observed in knockout mice suggest that Akt isoforms are not functionally redundant. The rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 69 12  شماره 

صفحات  -

تاریخ انتشار 2009